Free Boundary Regularity in the Parabolic Fractional Obstacle Problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Boundary Regularity in the Parabolic Fractional Obstacle Problem

The parabolic obstacle problem for the fractional Laplacian naturally arises in American option models when the assets prices are driven by pure jump Lévy processes. In this paper we study the regularity of the free boundary. Our main result establishes that, when s > 12 , the free boundary is a C 1,α graph in x and t near any regular free boundary point (x0, t0) ∈ ∂{u > φ}. Furthermore, we als...

متن کامل

Regularity of solutions to the parabolic fractional obstacle problem

In recent years, there has been an increasing interest in studying constrained variational problems with a fractional diffusion. One of the motivations comes from mathematical finance: jumpdiffusion processes where incorporated by Merton [14] into the theory of option evaluation to introduce discontinuous paths in the dynamics of the stock’s prices, in contrast with the classical lognormal diff...

متن کامل

Boundary regularity for a parabolic obstacle type problem

Mathematical background: The regularity of free boundaries has been extensively studied over the last thirty years and the literature on the Stefan problem is vast. This problem however (that is, the Stefan problem without sign restriction) was, to the author’s knowledge, first studied by L. A. Caffarelli, A. Petrosyan and H. Shahgholian in [CPS]. The authors of [CPS] showed that a solution is ...

متن کامل

Regularity of the free boundary in the biharmonic obstacle problem

In this article we use flatness improvement argument to study the regularity of the free boundary for the biharmonic obstacle problem with zero obstacle. Assuming that the solution is almost one-dimensional, and that the non-coincidence set is an non-tangentially accessible (NTA) domain, we derive the C-regularity of the free boundary in a small ball centered at the origin. From the C-regularit...

متن کامل

Global Regularity for the Free Boundary in the Obstacle Problem for the Fractional Laplacian

We study the regularity of the free boundary in the obstacle problem for the fractional Laplacian under the assumption that the obstacle φ satisfies ∆φ ≤ 0 near the contact region. Our main result establishes that the free boundary consists of a set of regular points, which is known to be a (n− 1)-dimensional C manifold by the results in [7], and a set of singular points, which we prove to be c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Mathematics

سال: 2018

ISSN: 0010-3640

DOI: 10.1002/cpa.21745